
SVM Toolbox
Theory, Documentation, Experiments

S.V. Albrecht (sa@highgames.com)

Darmstadt University of Technology
Department of Computer Science
Multimodal Interactive Systems

Contents

1 Introduction 2

2 Support Vector Machines 3
2.1 Problem Specification . 3
2.2 Linear Separation . 3
2.3 Linear Separation with Misclassifications . 4
2.4 Non-linear Separation with Kernels . 5
2.5 Dual Form . 6
2.6 Transductive SVM . 6
2.7 Multiclass Problem . 7

2.7.1 One vs. All . 7
2.7.2 One vs. One . 8

3 SVM Toolbox 9
3.1 General Description . 9
3.2 Toolbox Structure and Functions . 9

3.2.1 Toolbox Structure . 9
3.2.2 Toolbox Functions . 10

3.3 Examples . 11
3.3.1 Example 1: Inductive SVM . 12
3.3.2 Example 2: Transductive SVM . 12
3.3.3 Example 3: Heuristic Parameter Search . 13

3.4 Implementation of svm_ind (Inductive SVM) . 15
3.4.1 Input . 16
3.4.2 Output . 16
3.4.3 Algorithm . 16

3.5 Implementation of svm_trn (Transductive SVM) . 17
3.5.1 Input . 17
3.5.2 Output . 17
3.5.3 Algorithm . 17

3.6 Heuristic Parameter Search . 18
3.6.1 Algorithm . 19

4 Experiments 20
4.1 Multiclass Problem: OvA vs. OvO . 20
4.2 Inductive SVM vs. Transductive SVM . 21

i

List of Figures

2.1 Hyperplane through two linearly separable classes (taken from [2]) 3
2.2 Hyperplane through two non-linearly separable classes (taken from [2]) 4
2.3 Implicitly re-mapped data using the RBF Kernel (taken from [2]) 5
2.4 Separating hyperplane with transductive SVM (taken from [3]) 7
2.5 Multiclass problem with 4 classes (Linear Kernel and OvA) 8
2.6 Multiclass problem with 4 classes (Linear Kernel and OvO) 8

3.1 SVM Toolbox (structure) . 10
3.2 Example 1: Inductive SVM . 12
3.3 Example 2: Transductive SVM (1) . 13
3.4 Example 2: Transductive SVM (2) . 13
3.5 Example 3: Heuristic Parameter Search (1) . 14
3.6 Example 3: Heuristic Parameter Search (2) . 15
3.7 Parameter search pattern (3×3×3) . 19

ii

List of Tables

4.1 Experimental results: OvA vs. OvO (OvA) . 22
4.2 Experimental results: OvA vs. OvO (OvO) . 23
4.3 Experimental results: SVM vs. TSVM . 24

1

1 Introduction

SVM Toolbox is a set of Matlab functions that provide access to basic SVM functionalities such as linear
and non-linear separation of data points in an arbitrarily dimensional room. It was developed during a
project within the lecture “Machine Learning: Statistical Approaches 2”1, held by Prof. Bernt Schiele in
winter term 2009 at Darmstadt University of Technology2, Department of Computer Science3.

The remainder of this document is structured as follows:

• Section 2 provides a short introduction to the theory of SVMs.

• Section 3 explains the SVM Toolbox and provides implementation details.

• Section 4 contains two experiments: one that investigates performance differences of two com-
mon multiclass approaches (“One vs. All” and “One vs. One”), and one that is aimed at outlining
differences between inductive and transductive SVMs.

⇒ SVM Toolbox is publicly available under: www.highgames.com/svm_toolbox

1 http://www.mis.tu-darmstadt.de/ml2
2 http://www.tu-darmstadt.de
3 http://www.informatik.tu-darmstadt.de

2

www.highgames.com/svm_toolbox

2 Support Vector Machines

Support Vector Machines (SVMs) are used to classify data (represented as real vectors) that belong to
two or more distinct classes. They were first introduced by Vapnik in [5] and later in [1]. This chapter
provides a very short introduction to the formal theory of SVMs. Note that no attempt has been made
to cover the topic completely, nor to present it in a comprehensive manner. Furthermore, this chapter
focuses on the classification problem, while SVMs can also be used to solve the regression problem, which
is not covered by this document.

2.1 Problem Specification

Consider a set X =
¦

x i | i ∈ {1, ..., n} ∧ x i ∈ Rd
©

and a set Y =
�

yi | i ∈ {1, ..., n} ∧ yi ∈ {−1,+1}
	

. The
elements x i in X are called examples and the elements yi in Y are called class labels. We say x i belongs
to class yi, or x i is labelled with yi.

The goal is to find a hyperplane that separates all examples such that those examples located above
the hyperplane belong to one class, and those below the hyperplane belong to the other class. This hy-
perplane can be described by w · x + b = 0 where w, x ∈ Rd , b ∈ R, w is orthogonal to the hyperplane,
and b

‖w‖ is the perpendicular distance from the hyperplane to the origin (see figure 2.1).

Figure 2.1: Hyperplane through two linearly separable classes (taken from [2])

2.2 Linear Separation

Consider the case where X is linearly separable. Then there exist w ∈ Rd and b ∈ R such that for all
i ∈ {1, ..., n} the following holds:

w · x i + b ≥+1 if yi =+1
w · x i + b ≤−1 if yi =−1

Or, in one equation:

yi(w · x i + b)− 1≥ 0

3

In order to classify future data as accurate as possible, SVMs try to select w and b in a way that those
examples closest to the hyperplane (called “Support Vectors”, hence the name) lie as far away form it as
possible. This approach is denoted as maximum margin classification.

Since the margin is equal to 1
‖w‖ , this is equivalent to finding

min‖w‖ s.t. yi(w · x i + b)− 1≥ 0 ∀i

which, of course, is equivalent to

min1
2
‖w‖2 s.t. yi(w · x i + b)− 1≥ 0 ∀i.

The latter can be efficiently solved using a Quadratic Programming (QP) application.

2.3 Linear Separation with Misclassifications

Suppose X is “almost” linearly separable (as in figure 2.2), meaning just a few examples (e.g. 1 out of
10) need to be misclassified in order to achieve a linear separation of the data. We therefore introduce a
new variable ξi (called slack variable) for each x i that measures the deviation of x i from the hyperplane
in case of a wrong classification, i.e.

w · x i + b ≥+1− ξi if yi =+1
w · x i + b ≤−1+ ξi if yi =−1
where ξi ≥ 0 ∀i

Or, in one equation:

yi(w · x i + b)− 1+ ξi ≥ 0
where ξi ≥ 0 ∀i

Figure 2.2: Hyperplane through two non-linearly separable classes (taken from [2])

The optimization problem now amounts to finding

min1
2
‖w‖2+ C

n
∑

i=1
ξi s.t. yi(w · x i + b)− 1+ ξi ≥ 0 ∀i and ξi ≥ 0 ∀i

where C controls the trade-off between the slack variable penalty and the size of the margin.

2.3 Linear Separation with Misclassifications 4

2.4 Non-linear Separation with Kernels

Consider the case where X is not linearly separable, that is, there exists no hyperplane in dimension d
that divides the space correctly into two classes (as on the left side in figure 2.3). In every such case,
there exists at least one transformation (called feature mapping) φ : Rd → Rd+ where d+ > d that maps
all x ∈ Rd into a higher-dimensional space such that the resulting set of transformed examples φ(X) is
linearly separable through a hyperplane in Rd+ (as on the right side in figure 2.3).

Since d+ is unbounded (i.e., d+ → ∞ is possible), it is often impractical to compute φ for even one
example. We therefore use so-called kernel functions k : Rd ×Rd → R that compute the dot product of
two d-dimensional vectors in an implicitly higher space (i.e., k(x i, x j) = φ(x i) ·φ(x j)), and so we do not
have to compute or even know a feature mapping φ (this is referred to as the kernel trick).

Several such kernel functions exist, some of which are more useful and some are less.

The most common kernels are:

• Linear Kernel: k(x i, x j) = x i · x j

• Polynomial Kernel: k(x i, x j) = (x i · x j + a)b

• Radial Basis Function (RBF) Kernel: k(x i, x j) = ex p
�

−‖xi−x j‖2

2σ2

�

• Sigmoidal Kernel: k(x i, x j) = tanh(a(x i · x j)− b)

Figure 2.3: Implicitly re-mapped data using the RBF Kernel (taken from [2])

Using kernel functions in order to separate data that is not linearly separable requires substituting each
dot product x i · x j in the original optimization problem with k(x i, x j). However, if the transformation
of the data is to be visualised, one has to determine an explicit feature mapping φ (not covered by this
document).

2.4 Non-linear Separation with Kernels 5

2.5 Dual Form

Recall the minimization problem from section 2.3, which will be repeated for convenience:

min1
2
‖w‖2+ C

n
∑

i=1
ξi s.t. yi(w · x i + b)− 1+ ξi ≥ 0 ∀i and ξi ≥ 0 ∀i

We introduce Lagrange multipliers αi and βi in order to put these terms into one expression:

ΦP ≡
1
2
‖w‖2+ C

n
∑

i=1
ξi −

n
∑

i=1
αi
�

yi
�

w · x i + b
�

− 1+ ξi
�

−
n
∑

i=1
βiξi

subject to

0≤ αi ≤ C ∀i, βi ≥ 0 ∀i, and ξi ≥ 0 ∀i

This is called the primal form of the original problem. Minimizing ΦP with respect to w, b, αi and βi
is equivalent to the previous formulation. However, since we have more than one unknown variable,
we need to reformulate the problem. Differentiating ΦP with respect to w, b, and ξi and setting the
derivatives to zero amounts to:

δΦP
δw
= 0⇒ w =

n
∑

i=1
αi yi x i

δΦP
δb
= 0⇒

n
∑

i=1
αi yi = 0

δΦP
δξi
= 0⇒ C = αi + βi

Substituting w in ΦP reveals an equivalent formulation, known as dual form:

ΦD ≡
1
2

n
∑

i=1

n
∑

j=1
αiα j yi y jk(x i, x j)−

n
∑

i=1
αi s.t. 0≤ αi ≤ C ∀i and

n
∑

i=1
αi yi = 0

where k is a kernel function (e.g. Linear Kernel, see section 2.4).

Minimizing ΦD with respect to αi is equivalent to minimizing ΦP as before. The difference is that the
dual form constitutes an optimization problem with merely one unknown variable, whereas the primal
form has more than one. This is how SVMs are implemented in practice.

2.6 Transductive SVM

So far, SVMs are said to be a supervised learning technique, since each x i ∈ X has a corresponding label
yi ∈ Y . In many applications (e.g. speech or text recognition), it might turn out useful also to take into
account those examples that have no prior label. The latter is called transductive SVM (TSVM), whereas
the former is called inductive SVM.

Let X ∗ be a set of examples x∗i that have no prior label. The goal of transductive SVM is to find a label
y∗i for each x∗i and a separating hyperplane w · x + b = 0 such that it separates both labelled (X) and
unlabelled (X ∗) data with maximum margin (see figure 2.4; the dashed line corresponds to inductive
SVM whereas the solid line corresponds to transductive SVM, taking the unlabelled data into account).

2.5 Dual Form 6

This corresponds to minimizing

1
2
‖w‖2+ C

n
∑

i=1
ξi + C∗

u
∑

i=1
ξ∗i

subject to

∀n
i=1 yi(w · x i + b)− 1+ ξi ≥ 0

∀u
i=1 y∗i (w · x

∗
i + b)− 1+ ξ∗i ≥ 0

∀n
i=1 ξi > 0

∀u
i=1 ξ

∗
i > 0

where C and C∗ control the trade-off between the slack variable penalty and the size of the margin.

Figure 2.4: Separating hyperplane with transductive SVM (taken from [3])

2.7 Multiclass Problem

SVMs are binary classifiers, that is, we consider examples of two distinct classes. However, in real ap-
plications, we often face the problem of classifying more than two classes, which is referred to as the
multiclass problem. Now, consider the case in which we have a set L =

�

L1, ..., Lk
	

of k classes (or labels).
Two approaches to the multiclass problem have emerged to perform very well.

2.7.1 One vs. All

The One vs. All approach (OvA) exploits the fact that SVMs operate on continuous real values. Given a
set X of training examples, OvA learns an SVM classifier fi(x) := wi · x + bi for each Li (positive class)
against all other L j 6=i (assembled in the negative class). Thus, OvA reduces a k-multiclass problem into
k binary problems. An example x ∈ Rd is now classified as Li where i = ar gmax i fi(x) (called winner
takes all strategy).

2.7 Multiclass Problem 7

Figure 2.5: Multiclass problem with 4 classes (Linear Kernel and OvA)

2.7.2 One vs. One

The One vs. One approach (OvO) is more complex than OvA but also more accurate, and often applicable
to cases where OvA performs miserably. Given a set X of training examples, OvO learns k(k− 1)/2 SVM
classifiers fi j(x) := si gn

�

wi j · x + bi j

�

that classify Li (positive class) against L j (negative class). Notice
that for each fi j there is no f ji, i.e., there are no duplicates. Given an example x ∈ Rd , OvO computes all
fi j(x) and votes for Li if fi j(x)> 0, otherwise for L j. Finally, x is classified as that Li with the most votes
(called maximum votes strategy).

Figure 2.6: Multiclass problem with 4 classes (Linear Kernel and OvO)

2.7 Multiclass Problem 8

3 SVM Toolbox

3.1 General Description

SVM Toolbox is a set of Matlab functions that provide access to basic SVM functionalities. It is mainly
designed for educational purposes such as experimenting with the different kernel types or comparing
the two multiclass approaches, but further applications may as well be possible. SVM Toolbox contains
functions that implement all the “things” described in chapter 2, which is basically the following:

• Inductive learning (see section 2.2)
• Transductive learning (see section 2.6)
• Multiclass learning (see section 2.7)
• Non-linear separation (see section 2.4)
• 2D-Visualization
• Accuracy determination
• Heuristic parameter search (see section 3.6)

However, SVM Toolbox is neither designed to perform exceptionally well, nor does it support regres-
sion through SVMs. Interested programmers may feel free to add new functions or to improve existing
ones. SVM Toolbox has been developed using Matlab 7.9.0 (R2009b), but former versions may work as
well. Use of this software is not restricted by any license.

The remainder of this chapter gives an overview of the structure and functions in SVM Toolbox and
provides implementation details of inductive and transductive learning. The chapter concludes with a
discussion of a grid-based parameter search used in SVM Toolbox to find optimal or nearly optimal
parameter settings.

3.2 Toolbox Structure and Functions

This section first describes the structure employed in SVM Toolbox and subsequently the most important
functions provided by it. Note that each function is separately documented in its corresponding file. For
more information regarding a function fun that is not nested, type “help fun” in Matlab.

3.2.1 Toolbox Structure

Consider figure 3.1. The figure shows a directed graph that contains the most important functions pro-
vided by SVM Toolbox. The graph is supposed to be read from left to right. Each column in the graph
can be understood as a section where each section has immediate access to its right neighbour section,
and thus implicit access to their respective right neighbours. The first section is called the application
section, as it contains functions designed for experimental purposes only. The fifth section is called the
kernel section, since it only consists of kernel functions.

Now, consider a path within the graph. Each path starts with a node labelled by a function of the
application section and ends with a node labelled by a function of the kernel section. Such a path is
called a toolbox configuration, it specifies all components used by a function of the application section.

9

Since the path is directed, each edge provides information regarding the access order, that is, if there are
nodes A and B connected by an edge A→ B, then A calls B and later on uses its result value.

Figure 3.1: SVM Toolbox (structure)

3.2.2 Toolbox Functions

The following is a list of the most important functions contained in SVM Toolbox. This list is neither com-
plete (but almost), nor is it intended as a replacement for the documentation in Matlab. The interested
reader is encouraged to read the documentation in the corresponding function files as well.

svm_demo This function demonstrates and visualizes the functioning of (T)SVMs in a 2-dimensional
coordinate system. The user is asked to enter data points (labelled and unlabelled) which will be
used to determine a classifier according to the application configuration (see section 3.2.1). The
data points can be stored in matrices for reuse with other configurations. It is also possible to
define test data that can be used to determine accuracies or to find an optimal parameter setting
(see svm_hps). For more information, type “help svm_demo”.

svm_hps This function can be used to determine accuracies or to find an optimal parameter setting (see
section 3.6). It takes as input a set X of training examples, a set Y of corresponding labels, a set N
of neutral (unlabelled) data, a set XT of test examples, a set YT of corresponding labels, function
handles for a multiclass function and a kernel generator, argument (ranges) for the generator, the
grid size, and the search depth (both for the parameter search) and computes the accuracy or an
optimal parameter setting. For more information, type “help svm_hps”.

svm_ova This function implements the multiclass approach “One vs. All” (OvA) as defined in section
2.7.1. It takes as input a set X of training examples, a set Y of corresponding labels, a set N of
neutral (unlabelled) data, two misclassification penalty factors C1 (for labelled data) and C2 (for
unlabelled data), and a kernel function and computes a classifier according to the definition of
OvA. For more information, type “help svm_ova”.

svm_ovo This function implements the multiclass approach “One vs. One” (OvO) as defined in section
2.7.2. It takes as input a set X of training examples, a set Y of corresponding labels, a set N of
neutral (unlabelled) data, two misclassification penalty factors C1 (for labelled data) and C2 (for
unlabelled data), and a kernel function and computes a classifier according to the definition of
OvO. For more information, type “help svm_ovo”.

svm_trn Implementation of Transductive SVM (see section 2.6). Although this function is based on the
theory covered in section 2.6, its implementation follows another approach (see section 3.5). It
takes as input a set X+ of positive training examples, a set X− of negative training examples, a set

3.2 Toolbox Structure and Functions 10

X0 of neutral (unlabelled) training examples, two misclassification penalty factors C1 (for labelled
data) and C2 (for unlabelled data), and a kernel function and computes a separating hyperplane
with maximum margin that involves the neutral data. For more information, type “help svm_trn”.

svm_ind Implementation of Inductive SVM (see section 2.2). This function is based on the theory covered
in section 2.5. It takes as input as set X of training examples, a set Y of corresponding labels, a set
C of misclassification penalties for each example, and a kernel function and computes a separating
hyperplane with maximum margin. For more information, type “help svm_ind”.

kernel_lin (nested function) Linear kernel function as defined in section 2.4. This function is nested in
kernel_gen_lin and can be obtained by a call of the latter. It takes as input two d-dimensional
real vectors and computes the kernel value according to its definition. For more information, see
documentation of kernel_gen_lin.

kernel_pol (nested function) Polynomial kernel function as defined in section 2.4. This function is
nested in kernel_gen_pol and can be obtained by a call of the latter. It takes as input two
d-dimensional real vectors and computes the kernel value according to its definition. For more
information, see documentation of kernel_gen_pol.

kernel_rbf (nested function) Radial basis kernel function as defined in section 2.4. This function is
nested in kernel_gen_rbf and can be obtained by a call of the latter. It takes as input two
d-dimensional real vectors and computes the kernel value according to its definition. For more
information, see documentation of kernel_gen_rbf.

kernel_sig (nested function) Sigmoidal kernel function as defined in section 2.4. This function is nested
in kernel_gen_sig and can be obtained by a call of the latter. It takes as input two d-dimensional
real vectors and computes the kernel value according to its definition. For more information, see
documentation of kernel_gen_sig.

kernel_gen_lin This function generates a linear kernel (see kernel_lin). It can either be used to
directly generate a kernel for svm_demo, or it can be passed through svm_hps as a function handle
in order to dynamically generate new kernels during the parameter search. For more information,
type “help kernel_gen_lin”.

kernel_gen_pol This function generates a polynomial kernel (see kernel_pol). It can either be used to
directly generate a kernel for svm_demo, or it can be passed through svm_hps as a function handle
in order to dynamically generate new kernels during the parameter search. For more information,
type “help kernel_gen_pol”.

kernel_gen_rbf This function generates a radial basis kernel (see kernel_rbf). It can either be used to
directly generate a kernel for svm_demo, or it can be passed through svm_hps as a function handle
in order to dynamically generate new kernels during the parameter search. For more information,
type “help kernel_gen_rbf”.

kernel_gen_sig This function generates a sigmoidal kernel (see kernel_sig). It can either be used to
directly generate a kernel for svm_demo, or it can be passed through svm_hps as a function handle
in order to dynamically generate new kernels during the parameter search. For more information,
type “help kernel_gen_sig”.

3.3 Examples

Three examples will be shown in order to get an impression of what is possible with SVM Toolbox. The
examples have been made using Matlab 7.9.0 (R2009b), but older versions may work as well.

3.3 Examples 11

3.3.1 Example 1: Inductive SVM

Figure 3.2 shows an inductive learning scenario with 7 distinct classes. Typing the command

svm_demo(10,0,@svm_ova,kernel_gen_rbf(10))

first opens a new figure. The user is then prompted to enter data points using the keys 1 to 9 for la-
belled data and 0 for neutral (unlabelled) data. Here, a face was drawn. Pressing the enter key performs
SVM with the OvA multiclass approach (see section 2.7.1) using the radial basis kernel (see section 2.4)
with σ = 10 and the misclassification penalty factor C = 10. The classification result is shown by means
of the coloured areas. Pressing the space bar at an arbitrary position sets and classifies a new data point
according to the learned model. Those data points marked by a plus (+) are support vectors.

Figure 3.2: Example 1: Inductive SVM

3.3.2 Example 2: Transductive SVM

We now would like to see how transductive SVM (section 2.6) works.

We first start a new demo by typing the command

svm_demo(10,10,@svm_ova,kernel_gen_lin)

which states that the OvA multiclass approach (see section 2.7.1) and the linear kernel (see section
2.4) will be used along with the misclassification penalty factors C1 = 10 (for labelled data) and C2 = 10
(for unlabelled data). We then set two points as depicted in figure 3.3 and subsequently press the enter
key in order to perform SVM, which results in the classification shown by the figure.

3.3 Examples 12

Figure 3.3: Example 2: Transductive SVM (1)

We now add some neutral data points in order to realign the separating hyperplane (as shown in figure
3.4). Neutral data points are represented by grey circles. If we now press enter and thereby learn a new
classifier, we see that the new hyperplane has adjusted to the neutral data.

Figure 3.4: Example 2: Transductive SVM (2)

3.3.3 Example 3: Heuristic Parameter Search

Finally, let us see how the parameter search works. We begin by opening a new demo:

3.3 Examples 13

[X1,Y1,N,X2,Y2] = svm_demo(10,0,@svm_ovo,kernel_gen_pol([0,2]))

This time we apply the OvO multiclass approach (see section 2.7.2) and the polynomial kernel (see
section 2.4) with a = 0 and b = 2 (C1 = 10 and C2 = 0). After adding training examples (circles) and
test examples (triangles) as shown in figure 3.5, we press the enter key and thus learn a classifier. Clearly,
the result is not as good as we would like it to be. We therefore close the demo by pressing the escape
key and thereby store all training examples in X1, Y1 (labelled) and N (unlabelled), and, furthermore,
all test examples in X2 with the corresponding labels in Y2.

Figure 3.5: Example 3: Heuristic Parameter Search (1)

We now start a parameter search by entering the command

[acc,prm,t] =

svm_hps(X1,Y1,N,X2,Y2,@svm_ovo,@kernel_gen_pol,[0.1,100;0,0;0,10;0,10],3,5)

which states that, based on the previously stored data, an optimal parameter setting is to be searched
for with the OvO multiclass approach and the polynomial kernel. The matrix [0.1,100; 0,0; 0,10;
0,10] means that C1 will be restricted to the range [10−1, 102], C2 to [0, 0] (since there is no neutral
data), a to [0, 10], and b to [0,10]. The parameter search will use a grid size of 3 and a search depth of
5 (see section 3.6). acc will contain the resulting accuracy based on the found parameter setting in prm,
t will contain the computation time in seconds.

As a result of the parameter search, we get

acc = 1 and prm = [25.0750; 0; 2.5000; 2.5000]

that is, we get a perfect classification when using C1 = 25.0750, C2 = 0, a = 2.5, and b = 2.5.

3.3 Examples 14

Incorporating this information results in the following command:

svm_demo(25,0,@svm_ovo,kernel_gen_pol([2.5,2.5]),X1,Y1,N,X2,Y2)

Note that the stored data is appended to the command in order to reconstruct the same scenario as
before. An optimal classification based on the found parameter setting is shown in figure 3.6.

Figure 3.6: Example 3: Heuristic Parameter Search (2)

3.4 Implementation of svm_ind (Inductive SVM)

The function svm_ind implements inductive SVM based on the theory covered in section 2.5. The im-
plementation basically follows Fletcher’s paper [2]. However, since quadprog from the Optimization
Toolbox1 is used to solve the optimization problem, some deviations were made in order to adjust the
algorithm to quadprog’s input specification. Furthermore, as we do not know the feature mapping φ (see
section 2.4), the algorithm must rely on the given kernel function k only, and so the resulting classifier
f is formulated as

f (x) =
n
∑

i=1
αi yik(x i, x) + b

instead of the classical formulation

f (x) = w ·φ(x) + b

where φ is an explicit feature mapping. In order to classify an example x , one needs to compute
sgn

�

f (x)
�

. The sign function is left out, since we need the real-valued result of f (x) for the OvA
multiclass approach (see section 2.7.1).

1 http://www.mathworks.de/access/helpdesk/help/toolbox/optim/

3.4 Implementation of svm_ind (Inductive SVM) 15

3.4.1 Input

svm_ind takes as input (in given order):

• A matrix X ∈ Rn×d of n training examples, where each x i ∈ X corresponds to a row in X .

• A vector Y ∈ {+1,−1}n of corresponding class labels (x i ∈ X is labelled with yi ∈ Y).

• A vector C ∈ Rn
≥0 of penalty factors (x i ∈ X is penalized by factor ci ∈ C if misclassified).

• A function handle k of a kernel (k : Rd ×Rd → R, (x i, x j) 7→ φ(x i) ·φ(x j)).

3.4.2 Output

svm_ind returns as output (in given order):

• A function handle f of a classifier (defined as above).

• A matrix SX ∈ Rs×d of s support vectors (SX “⊆” X).

• A vector SY ∈ {+1,−1}s of corresponding labels (SY “⊆” Y).

• A vector Sα ∈ Rs
≥0 of non-negative Lagrange multipliers (x i ∈ SX is multiplied by αi ∈ Sα).

3.4.3 Algorithm

svm_ind works as follows (in given order):

• Compute symmetric matrix H ∈ Rn×n, where Hi j = yi y jk(x i, x j)

• Minimize 1
2
αT Hα−

n
∑

i=1
αi in α= (α1, ...,αn) s.t. 0≤ αi ≤ ci and

n
∑

i=1
αi yi = 0 (using quadprog)

• Determine the matrices SX , SY , and Sα such that x i ∈ SX ⇔ x i ∈ X ∧ 0< αi < ci

• Set Si =
�

i | x i ∈ SX
	

(set of support vector indices)

• Compute b = 1
|SX |

∑

i∈Si

�

yi −
∑

j∈Si

α j y jk(x j, x i)

�

• Return classifier f (x) =
∑

i∈Si

αi yik(x i, x) + b

3.4 Implementation of svm_ind (Inductive SVM) 16

3.5 Implementation of svm_trn (Transductive SVM)

The function svm_trn implements transductive SVM based on the theory covered in section 2.6. It is
an instance of Joachims’ algorithm [3], but has been slightly modified since the original algorithm, as
described in section 4.1 in [3], assumes the primal form of the optimization problem (see section 2.2).

3.5.1 Input

svm_trn takes as input (in given order):

• A matrix X+ ∈ Rn1×d of n1 positive training examples, where x ∈ X+ correspond to rows in X+.

• A matrix X− ∈ Rn2×d of n2 negative training examples, where x ∈ X− correspond to rows in X−.

• A matrix X0 ∈ Rn3×d of n3 unlabelled training examples, where x∗ ∈ X0 correspond to rows in X0.

• A real number C1 ∈ R that serves as misclassification penalty factor for labelled data.

• A real number C2 ∈ R that serves as misclassification penalty factor for unlabelled data.

• A function handle k of a kernel (k : Rd ×Rd → R, (x i, x j) 7→ φ(x i) ·φ(x j)).

3.5.2 Output

svm_trn returns as output (in given order):

• A function handle f of a classifier (defined as in section 3.4).

• A matrix SX ∈ Rs×d of s support vectors (SX “⊆” X+ ∪ X− ∪ X0).

• A vector SY ∈ {+1,−1}s of corresponding labels.

• A vector Sα ∈ Rs
≥0 of non-negative Lagrange multipliers (x i ∈ SX is multiplied by αi ∈ Sα).

3.5.3 Algorithm

svm_trn works as follows (in given order):

• Append X− to X+ and denote the resulting matrix as X (X ∈ R(n1+n2)×d)

• Create Y ∈ {+1,−1}n1+n2 , where the first n1 entries have the value +1, the rest −1

• Create C ∈ Rn1+n2
≥0 , where each entry has the value of C1

3.5 Implementation of svm_trn (Transductive SVM) 17

• Learn initial classifier f by calling svm_ind(X , Y, C , k)

• If n3 = 0 (i.e., X0 is empty) then stop algorithm and return f

• Create Y0 ∈ {+1,−1}n3 , where each y∗i ∈ Y0 labels an x∗i ∈ X0 (using f)

• Append X0 to X and Y0 to Y

• For c =−5 to 0 do

• Create C0 ∈ R
n3
≥0, where each entry has the value C2 ∗ 10c

• Append C0 to C and denote the resulting vector as C∗

• (Ω) Update classifier f using svm_ind(X , Y, C∗, k)

• If there are switchable y∗i ∈ Y0 and y∗j ∈ Y0 then switch them and go back to (Ω)

• end for

• Return classifier f

Note: y∗i ∈ Y0 and y∗j ∈ Y0 are switchable if y∗i 6= y∗j and

max
�

0, 1− y∗i f (x∗i)
�

+max
�

0, 1− y∗j f (x∗j)
�

> max
�

0, 1− y∗j f (x∗i)
�

+max
�

0, 1− y∗i f (x∗j)
�

3.6 Heuristic Parameter Search

In general, the quality of an SVM classifier is immediately dependent on a proper parameter setting.
However, searching for optimal parameters is impractical when done without computational support,
as the parameter space grows exponentially with the number of parameters. For instance, consider a
learning scenario with labelled and unlabelled data, using a polynomial kernel. Here, we already have
four parameters: C1, C2, a, and b. Other kernels might require even more parameters to be set.

Several approaches exist that try to find an optimal parameter setting with or without user interaction.
SVM Toolbox provides an automatic parameter search which is based on a proposal by Carl Staelin [4]. It
is a local (or greedy) search, since each iteration within the algorithm requires concentrating around the
previous optimum. The user may set the granularity and the search depth of the algorithm, and thereby
control the trade-off between quality and convergence. This section briefly explains the functioning2 of
the parameter search (henceforth HPS). For more details, see documentation of svm_hps.

2 For a usage example, see section 3.3.3

3.6 Heuristic Parameter Search 18

3.6.1 Algorithm

HPS is a grid-based approach. For each of the n parameters, the user is required to specify a range of
values in which an optimum is to be searched. Altogether, these ranges span a room in which an optimal
parameter setting is to be found. HPS now fits a search pattern into this room (as in figure 3.7) and
samples parameter settings at the given spots. Each setting will be evaluated using a previously defined
test set. The next iteration scales the pattern down (i.e., the resolution is increased) and positions its
centre to the last optimum (i.e, the search is concentrated around a promising parameter setting). This
process continues until a perfect setting is found (i.e, 100% accuracy), or the maximum search depth, as
specified by the user, is reached.

Figure 3.7: Parameter search pattern (3×3×3)

Consider figure 3.7. Here, we try to find an optimal parameter setting for three parameters. For sim-
plicity, each parameter is restricted to the range [0, 100], although arbitrary ranges are possible. We use
a search pattern of grid size 3, that is, we have a 3×3×3 sampling pattern. Each spot corresponds to a
specific parameter setting and therefore is a 3-dimensional vector, where each entry specifies the value
of a certain parameter. The red spot marks the centre of the pattern.

3.6 Heuristic Parameter Search 19

4 Experiments

This section contains the results of two little (or rather tiny) experiments, that have been examined using
SVM Toolbox. One experiment is concerned about finding differences between the multiclass approaches
OvA and OvO (see section 2.7), the other one in differences between inductive SVM and transductive
SVM (see sections 2.2 and 2.6, respectively).

Both experimental data sets have in common that none of them is comparable to what we would ex-
pect in real applications. Each data set was manually created, merely consists of 2-dimensional examples,
and, furthermore, has much less examples than practical data sets do. Nevertheless, they at least give a
first impression of how the considered approaches behave in different settings.

The experiments have been performed using Matlab 7.9.0 (R2009b) on an Intel machine with Win-
dows XP (Home). The experimental data sets (and their respective results) are publicly available under
www.highgames.com/svm_toolbox/experiments.

4.1 Multiclass Problem: OvA vs. OvO

This experiment is concerned about performance differences between the multiclass approaches OvA
(“One vs. All”) and OvO (“One vs. One”). A basic understanding of the theoretical foundations is recom-
mended, the reader is therefore encouraged to read section 2.7 before continuing.

The experiment consists of 12 different data sets altogether, whereof 3 data sets contain 2, 4, 6, and 8
classes, respectively. Each data set was tested using the linear kernel, the polynomial kernel, and the RBF
kernel. Additionally, each test run involved the heuristic parameter search of SVM Toolbox (see section
3.6) to find an optimal parameter setting, using a grid size of 3 and a search depth of 3. For complete-
ness, each data set consists of at least 2 and at most 62 training examples, and of at least 85 and at most
390 test examples. The results using OvA are shown in table 4.1, those using OvO in table 4.2.

Consider the results using the OvA approach in table 4.1. Those data sets that contain 2 classes were
perfectly classified in an average time of 0.1705 seconds for all kernels. Using 4 classes (or more) re-
veals that using the OvA approach together with the linear kernel is not a proper choice. The polynomial
kernel still works fine for 4 classes, but breaks down for 6 or more classes. The RBF kernel always works
perfectly in a comparingly short amount of time.

Now, consider the results using the OvO approach in table 4.2. Those data sets that contain 2 classes
were perfectly classified in an average time of 0.0954 seconds for all kernels, which is clearly better than
OvA. Using 4 classes (or more) shows that using the OvO approach together with the linear kernel still
might be a good choice. With a proper parameter setting, this combination even achieves perfect separa-
tion in some cases. The polynomial kernel works fine for 4 classes or more, but has some exceptions as
one can see. Again, the RBF kernel works perfectly with any data set and is slightly faster than OvA.

Altogether, we have a final result of OvO being about 22% more accurate than OvA, and OvO being
more than 233% faster than OvA, which is unique. However, one exception must be made. The RBF ker-
nel showed no difference for both variants except OvO being slightly faster, but this may be neglected.
The reason for this can be found when considering the form of the RBF kernel. It basically selects a mid-

20

www.highgames.com/svm_toolbox/experiments

dle point and draws a circle around it. Since OvA uses the distance from an example to the hyperplane,
its classification quality equals that of OvO, which does not gain any benefit from taking the results of
multiple classifiers into account (using the RBF kernel).

The results are surprising in that OvO is generally expected to be more accurate than OvA, but also
much slower, since its complexity is O(n2) (polynomial growth), whereas that of OvA is O(n) (linear
growth), where n is the number of classes. However, as we know from the field of Complexity Theory,
there is a n0 such that for all n > n0 OvA will be faster than OvO. In this experiment, OvO is faster
solely because of the little amount of classes and examples. Note that each classifier in OvO is based on
an optimization problem with comparingly few examples, whereas each classifier in OvA is based on an
optimization problem with comparingly many examples.

4.2 Inductive SVM vs. Transductive SVM

This experiment investigates differences between inductive SVM and transductive SVM. The reader is
recommended to read the sections 2.2 and 2.6 to get a basic notion of the underlying concepts before
proceeding. Henceforth, inductive SVM will be abbreviated by SVM and transductive SVM by TSVM.

Again, 12 different data sets build the foundation of this experiment. 4 of these are especially well
suited for the linear kernel, 4 for the polynomial kernel, and 4 for the RBF kernel. Each data set was
tested using only those kernels for which they were well suited. Here, we do only consider binary clas-
sification problems, since significant deviations may directly be generalized to the multiclass problem
(as OvA and OvO both reduce the multiclass problem to multiple instances of the binary problem). Fi-
nally, we use the constant parameters a = 0 and b = 2 for the polynomial kernel (called homogeneous
quadratic kernel), and σ = 10 for the RBF kernel. The misclassification penalty factors are set to C1 = 10
(labelled data) and C2 = 10 (unlabelled data). The amount of training examples ranges between 2 and
62, that of neutral examples between 8 and 41, and that of test examples between 29 and 137.

The results of the experiment are shown in table 4.3. We see that SVM and TSVM have the same ac-
curacy, except for some cases where TSVM is slightly less accurate than SVM. This results in a 1% worse
classification when using TSVM. However, the big drawback of TSVM is its time consumption, as one can
immediately see. TSVM is at least 10 times (rounded), and at most 1200 times (rounded) slower than
SVM. In average, TSVM is roughly 263 times slower than SVM.

The results might be somewhat confusing, as one might expect TSVM to be at least as accurate as
SVM. However, one has to take into account that this experiment merely reveals TSVM being slightly
less accurate in some cases, but there might as well be cases where TSVM performs better. Within this
experiment, TSVM could not gain any benefit from the neutral data, but though was exceedingly slow
compared to SVM. One even had to wait for more than a minute before TSVM terminated, were SVM
was done in 60 milliseconds. However, TSVM is likely to outperform SVM in cases where we have little
training data, but a huge amount of neutral data, as is the case in text recognition (e.g., see [3]).

4.2 Inductive SVM vs. Transductive SVM 21

Cl. Set lin: Acc. (%) Time (s) pol: Acc. (%) Time (s) rbf: Acc. (%) Time (s)

2 1 1 0.0709 1 0.1052 1 0.2358

2 1 0.1019 1 0.1218 1 0.0896

3 1 0.2408 1 0.1775 1 0.3918

Ø 1 0.1378 1 0.1348 1 0.2390

4 1 0.3448 6.4181 1 0.6977 1 7.5143

2 0.4944 6.3821 1 0.7592 1 1.3080

3 0.2723 10.4974 0.9906 101.3638 1 2.0460

Ø 0.3705 7.7658 0.9968 34.2735 1 3.6227

6 1 0.4571 19.8477 1 62.6045 1 4.6990

2 0.5152 14.8929 0.8961 154.2432 1 4.1805

3 0.1417 26.6774 0.3858 288.7697 1 6.7236

Ø 0.3713 20.4726 0.7606 168.5391 1 5.2010

8 1 0.2734 40.9409 0.4775 409.9273 1 10.6384

2 0.2769 50.5544 0.4538 530.0074 1 14.6422

3 0.2 80.5452 0.2522 1102.70 1 9.0250

Ø 0.2501 57.3468 0.3945 680.8782 1 11.4352

Ø 0.4980 21.4308 0.7880 220.9564 1 5.1245

Table 4.1: Experimental results: OvA vs. OvO (OvA)

4.2 Inductive SVM vs. Transductive SVM 22

Cl. Set lin: Acc. (%) Time (s) pol: Acc. (%) Time (s) rbf: Acc. (%) Time (s)

2 1 1 0.0482 1 0.0491 1 0.1253

2 1 0.0555 1 0.0655 1 0.0598

3 1 0.0993 1 0.0972 1 0.2592

Ø 1 0.0676 1 0.0706 1 0.1481

4 1 0.8138 3.6786 1 0.3807 1 5.8212

2 1 0.3993 1 0.4483 1 1.1061

3 0.7089 5.2851 0.9859 52.7378 1 1.6709

Ø 0.8409 3.1210 0.9953 17.8556 1 2.8660

6 1 1 0.9468 1 1.0564 1 3.1091

2 0.9740 8.5817 0.9870 71.9098 1 2.9128

3 0.5551 16.4394 0.6496 146.0251 1 4.5782

Ø 0.8430 8.6559 0.8788 72.9971 1 3.5333

8 1 1 2.0686 1 1.8859 1 7.1025

2 0.6385 27.8428 1 72.6914 1 10.1715

3 0.5087 36.0530 0.7217 395.1113 1 10.0006

Ø 0.7157 21.9881 0.9072 156.5628 1 9.0915

Ø 0.8499 8.4581 0.9453 61.8715 1 3.9097

Table 4.2: Experimental results: OvA vs. OvO (OvO)

4.2 Inductive SVM vs. Transductive SVM 23

Kernel Set SVM: Acc. (%) Time (s) TSVM: Acc. (%) Time (s)

lin 1 1 0.0084 1 9.0608

2 1 0.0042 1 0.2411

3 1 0.0540 0.9773 1.1985

4 1 0.0145 0.9275 5.9019

Ø 1 0.0202 0.9762 4.1005

pol 1 1 0.0285 1 0.4243

2 1 0.0750 1 0.7328

3 1 0.0788 1 1.1911

4 1 0.0462 1 1.3731

Ø 1 0.0571 1 0.9303

rbf 1 1 0.0754 1 1.4967

2 1 0.1175 1 25.6407

3 1 0.0609 0.9922 68.1199

4 1 0.0337 0.9635 41.3577

Ø 1 0.0718 0.9889 34.1537

Ø 1 0.0497 0.9883 13.0615

Table 4.3: Experimental results: SVM vs. TSVM

4.2 Inductive SVM vs. Transductive SVM 24

Bibliography

[1] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273–297.

[2] T. Fletcher. Support vector machines explained. Tutorial Paper - PhD, 2008.

[3] T. Joachims. Transductive inference for text classifcation using support vector machines. Interna-
tional Conference on Machine Learning (ICML), 1999.

[4] C. Staelin. Parameter selection for support vector machines. Technical report, HP Laboratories Israel,
2003.

[5] V. Vapnik and A. Lerner. Pattern recognition using generalized portrait method. Automation and
Remote Control, 24:774–780, 1963.

25

	Introduction
	Support Vector Machines
	Problem Specification
	Linear Separation
	Linear Separation with Misclassifications
	Non-linear Separation with Kernels
	Dual Form
	Transductive SVM
	Multiclass Problem
	One vs. All
	One vs. One

	SVM Toolbox
	General Description
	Toolbox Structure and Functions
	Toolbox Structure
	Toolbox Functions

	Examples
	Example 1: Inductive SVM
	Example 2: Transductive SVM
	Example 3: Heuristic Parameter Search

	Implementation of svm_ind (Inductive SVM)
	Input
	Output
	Algorithm

	Implementation of svm_trn (Transductive SVM)
	Input
	Output
	Algorithm

	Heuristic Parameter Search
	Algorithm

	Experiments
	Multiclass Problem: OvA vs. OvO
	Inductive SVM vs. Transductive SVM

